서울대학교 공과대학 화학생물공학부 정유성 교수팀이 미국 포덤대학교(Fordham University)와 공동 연구를 통해 대규모 언어모델(Large Language Model, LLM)을 활용해 신소재 합성 가능성을 예측하고, 그 근거를 해석하는 기술을 개발했다고 17일 밝혔다.
왼쪽부터 서울대학교 화학생물공학부 정유성 교수(교신저자), 서울대학교 화학공정신기술연구소 김성민 박사후연구원(제1저자)
이 연구는 신소재 설계 과정에서 합성이 어려운 후보 물질을 사전에 걸러내거나, 기존에 합성이 어려웠던 물질을 최적화하는 데 기여할 것으로 기대된다. 연구 논문은 화학 분야 국제 저명 학술지인 미국화학회지(Journal of the American Chemical Society, JACS) 및 독일응용화학회지(Angewandte Chemie International Edition) 에 각각 2024년 7월 11일, 2024년 2월 13일 게재됐다.
신소재 개발 과정에서 합성 가능성을 정확하게 평가하는 것은 필수적이다. 기존 기술은 소재의 열역학적 안정성을 평가하는 수준에 그쳐 실험 성공률과 차이가 컸으며, 일부 기계학습 모델은 단순한 분류 기능만 제공하고 예측 근거를 명확히 설명하지 못하는 한계를 지녔다.
정 교수팀은 이러한 문제를 해결하기 위해 LLM을 활용한 신소재 합성 예측 기술을 개발했다. 연구진은 사람이 이해할 수 있는 텍스트 형태의 무기 결정 소재 데이터를 LLM에 학습시키는 미세 조정(fine-tuning) 과정을 거쳐, 특정 물질의 합성 가능성을 분류하고 전구체를 예측하는 모델을 구축했다. 그 결과, 기존 기계학습 모델보다 높은 정확도를 달성했다.
특히, LLM이 단순한 예측 수행에 그치지 않고 합성이 어려운 이유, 합성 가능성을 저해하는 요소 등을 해석할 수 있다는 점이 이번 연구의 중요한 성과다. 또한, 기존에 밝혀지지 않았던 복잡한 요소 및 상관관계를 규명해 신소재 설계의 새로운 방향을 제시했다.
이번 연구는 신소재 개발 속도를 혁신적으로 단축할 수 있어, 반도체 및 2차전지 산업 등에서 한국의 기술 경쟁력 강화에 기여할 것으로 전망된다. 기존 신소재 개발 방식은 실험적 시행착오를 거치는 과정이 필수적이었으나, LLM 기반 예측 기술을 활용하면 설계 속도를 높이고 연구 자원을 효율적으로 사용할 수 있다.
특히, 반도체 소자 및 고효율 배터리 소재 설계에 적용할 경우 한국 주도의 첨단 소재 산업이 기술 우위를 지속하고, 시장 선점 효과를 누리는 데 기여할 것으로 기대된다. 향후 상용화되면 연구소와 기업이 신소재 발굴 및 양산 가능성 평가에 핵심 도구로 활용할 수 있을 것으로 보인다.
정유성 교수는 “LLM이 신소재 합성 가능성을 정교하게 예측할 뿐만 아니라 그 근거를 해석할 수 있음을 밝힌 것이 이번 연구의 가장 큰 의미”라며 “향후 LLM 기반 기술이 발전하면 보다 직관적이고 효율적인 신소재 설계 방향을 제시할 수 있을 것”이라고 말했다.
한편, 서울대학교 화학공정신기술연구소에서 근무 중인 김성민 박사후연구원은 기계학습과 재료과학을 융합한 후속 연구를 수행하며, 신소재 개발 패러다임 변화에 기여할 계획이다.
李대통령, 손정의 손잡고 'AI 산업의 미래' 논하다
이재명 대통령, IOC 커스티 코번트리위원장과 국제 스포츠 협력 방안 논의
이재명 대통령은 3일 대통령실에서 국제올림픽위원회(IOC) 커스티 코번트리(Kirsty Coventry) 위원장을 만나 한국과 IOC 간의 국제 스포츠 협력 방안에 대해 논의했습니다.
제22기 민주평화통일자문회의 출범식에 참석한 이재명 대통령
이웃을 돕기위한 자선남비, 2025년에도 딸랑거리다
홍콩 역사상 최악의 대형 화재...인명 피해가 계속 발생
지난 26일 홍콩 타이포 지역 아파트 단지에서 발생한 대형 화재로 많은 인명 피해가 발생해 홍콩 역사상 최악의 대화재로 기록되게 되었다. 시진핑 중국 국가주석은 "이번 화재로 숨진 소방관과 희생자 가족에 위로를 표했으며 피해 최소화를 촉구했다”고 전하고 있다. 이번 화재는 건물 여러 채가 화염과 연기에 휩싸여 있었는데 건물 ..